
LLMs as Compression Models

Ryan Hardesty Lewis
rl869@cornell.edu

Abstract

We explore the application of fine-tuned language mod-
els, like BERT, for text compression and decompression. By
using pre-trained language models and masked language
modeling, we develop a system that can efficiently compress
text data while maintaining the ability to reconstruct the
original text with high accuracy. Our approach involves
fine-tuning a BERT model on a masking task and using
the trained model to predict masked tokens during decom-
pression. We evaluate our system’s performance against
traditional compression methods like gzip and discuss the
trade-offs between compression ratio and reconstruction
accuracy. Preliminary experiments show promising results,
with our system achieving higher compression ratios than
gzip on short text sequences. We also discuss future direc-
tions for improving the system, such as exploring different
masking strategies and incorporating additional compres-
sion techniques.

1. Motivation

Recently, the New York Times has sued OpenAI, claim-
ing that ChatGPT could spit out entire articles of theirs, thus
infringing copyright [4]. OpenAI responded by claiming
that the Times had cherry-picked prompts and even inserted
parts of their articles to try and get ChatGPT to spit out
the rest and the idea that ChatGPT, an inherently genera-
tive and random text model, would memorize entire sec-
tions of data piece for piece was ridiculous [9]. The senti-
ment shared by OpenAI is somewhat correct, as generative
models are meant to be used to ”generate”, i.e. create new
information, not simply resuscitate trained data. However,
researchers from Google Deepmind found similar results,
creating adversarial attacks against ChatGPT and other gen-
erative models that could spit out training data verbatim [7].

These recent developments encroach on the idea of
compression- if we could give a language model a simple
prompt like ”Othello”, would it be possible to simply spit
out the entire work of Shakespeare? In doing this, the lan-
guage model would become the tool of text compression,
having stored almost perfect representations of probablis-

tic Shakespeare data in a smaller latent space, thus creating
a predictive compression tool. Researchers have long con-
sidered the tasks of prediction and compression to be inter-
twined [6], as one can liken Huffman’s encoding algorithm
to predicting the smallest byte representations of common
characters. Our work aims to expand on the scope of this
idea, showing how generative models can indeed be used to
improve compression performance compared to traditional
compression techniques.

The rapid growth of synthetic data has created a press-
ing need for efficient compression techniques, particularly
in the domain of natural language processing. While tradi-
tional compression algorithms like gzip have been widely
used, they often struggle to achieve high compression ra-
tios on short text sequences. Recent advancements in pre-
trained language models, such as BERT [3], have shown re-
markable success in capturing the underlying patterns and
semantics of natural language. This presents an opportunity
to leverage these models for predictive text compression.

The motivation behind our work is to develop a compres-
sion system that can effectively reduce the size of text data
while preserving the essential information necessary for re-
construction. By fine-tuning BERT models on our data, we
aim to achieve higher compression ratios compared to tra-
ditional methods. We note the issue of compounding error
in language models [8], as we might prompt ”Othello” and
have the output devolve into something completely unre-
lated given a long enough time window.

To combat this, we adopt an approach similar to the New
York Times in giving segments of the original data ver-
batim. This is a masking technique, where we feed in a
noisy version of an article, with missing words that must
be reconstructed by infilling the data. OpenAI has them-
selves claimed that training models to infill data is a su-
perior method for learning efficient representations in lan-
guage processing [1]. In this way, we can constructively
denoise the compressed ”noisy” data via prediction, which
has implications for various applications, such as efficient
storage and transmission of text data, error correction in lost
network packets, as well as reducing the memory footprint
of large-scale language models.

1



The quick brown jumps over the lazy dog

fox wolf cow
coyote dingo jackal

Figure 1. Masked language model architecture. The correct word “fox” is highlighted in green among similar probabilistic words presented
for the masked blank.

Figure 2. Masked language model architecture with multiple words masked. Each blank has multiple word options, making prediction
exponentially harder as more blanks are filled.

2. Method

The masked language modeling (MLM) task, popular-
ized by models like BERT [3], has become a standard ap-
proach for pretraining large language models. In MLM, a
percentage of input tokens are randomly replaced with a
special <mask> token, and the model is trained to predict
the original tokens based on the surrounding context. Fig-
ure 1 illustrates a simple example of the MLM task, where
the goal is to predict the masked word ”fox” from a set of
contextually relevant candidates. This training objective en-
courages the model to learn representations that capture the
syntactic and semantic relationships between words.

While the traditional MLM approach has been highly
successful in pretraining language models for various
downstream tasks, it can also be adapted for the purpose of
text compression. By strategically masking tokens that are
highly predictable given the surrounding context, we can
obtain a compressed representation of the text that main-
tains its essential information. Figure 2 demonstrates this
concept with multiple masked tokens, highlighting the po-
tential for using MLM as a foundation for text compression.

Building upon this idea, we propose a novel text com-
pression method that leverages the predictive power of
masked language models. Our approach aims to achieve
high compression ratios while preserving the ability to re-
construct the original text with minimal loss of information.
The trade-off between compression ratio and reconstruc-
tion quality can be controlled by adjusting the threshold
for masking tokens based on their predicted probabilities.
A higher threshold will mask more tokens, yielding higher
compression at the cost of potentially more reconstruction
errors. By replacing the placeholders with predicted tokens,
we reconstruct an approximation of the original text.

Our approach to text compression involves fine-tuning a
BERT model on a masking task and using the trained model
for compression and decompression. The process can be
broken down into the following steps:

1. Fine-tuning BERT: We start by fine-tuning a pre-
trained BERT model on a masked language modeling
task. Given a text corpus, we randomly mask a certain
percentage of tokens and train the model to predict the
original tokens based on the surrounding context. This
allows the model to learn the underlying patterns and
relationships within the text.

2. Compression: To compress a given text, we tokenize
it and randomly mask a subset of the tokens based on
a predefined masking probability. The masked tokens
are replaced with a special mask token, and the re-
sulting sequence represents the compressed text. The
compression ratio can be controlled by adjusting the
masking probability.

3. Decompression: During decompression, we feed the
compressed text into the fine-tuned BERT model. The
model predicts the original tokens for the masked posi-
tions based on the surrounding context. We replace the
mask tokens with the predicted tokens to reconstruct
the original text.

To recall how Huffman-esque compression algorithms
work, we note that common characters are transformed into
smaller byte sequences as they appear more frequently, and
thus smaller frequent representations reduce size. In a simi-
lar way, our choice of effectively noising our data by taking
out random words and instead introducing a masking token

2



Figure 3. Reconstruction accuracy of BERT
model across training epochs

Figure 4. Reconstruction accuracy of
RoBERTa model across training epochs

Figure 5. Reconstruction accuracy of Distil-
RoBERTa model across training epochs

lets us have a much smaller representation, due to the miss-
ing words, as well as a single token that can indicate a spot
that needs to be predicted by our reconstruction model. We
can even further effectively compress our data size by not
just masking random words to compress the data, but by
masking words and characters that are less frequent in the
Huffman encoding. Since we store the noised data in a sim-
ilar way, we effectively always have a better compression
ratio as compared to non-predictive methods as we always
store less information, not including model size.

To evaluate the performance of our compression system,
we compare it against traditional compression methods like
gzip. We measure the compression ratio, which is the ratio
of the compressed size to the original size, as well as the re-
construction accuracy, which indicates how closely the de-
compressed text matches the original text.

3. Experimental Analysis

We conducted preliminary experiments to assess the ef-
fectiveness of our BERT-based text compression system.
We used a pre-trained BERT model (bert-base-cased) and
fine-tuned it on a masked language modeling task using a
small dataset of text sequences. Figure 3 shows how we
trained the model for multiple epochs, ranging from 1 to
100, to observe the impact on reconstruction accuracy.

We generally observe that increasing the number of fine-
tuning epochs generally led to higher reconstruction ac-
curacy. This suggests that the model’s ability to predict
masked tokens improves with more training, which can turn
our lossy compression into lossless compression if we are
willing to make a tradeoff with time. We note the time taken
with our tiny sample datasets are shown in Table 1.

Dataset Size Training Runtime Training Loss Epochs
5,349 bytes 208 s 0.346 100
165 bytes 17 s 0.354 100

Table 1. Training time and loss for different dataset sizes.

From the table, we can observe that the larger dataset
(5,349 bytes) required a significantly longer training time
(208.3681 seconds) compared to the smaller dataset (165

bytes, 17.0485 seconds). However, the larger dataset also
achieved a slightly lower training loss (0.3464) compared
to the smaller dataset (0.3542). This means that increasing
the dataset size can lead to better model performance, but at
the cost of increased training time.

We wanted to see how the choice of model affects ac-
curacy over epochs and used optimized versions of BERT
in RoBERTa and DistilRoBERTa. RoBERTa is a more per-
formant version of BERT, while DistilRoBERTa is a small
model that had RoBERTa’s knowledge distilled into it. Fig-
ures 6 and 7 show that the choice of model significantly
affects the accuracy and training time. More recent models,
like RoBERTa, can train faster and achieve higher accuracy
with fewer epochs compared to BERT.

We can attribute some of these differences to improve-
ments in tokenization algorithms per model. A model’s
tokenizer plays a crucial role in how it processes and
understands text. RoBERTa uses a byte-level BPE tok-
enizer, which can handle out-of-vocabulary words better
than BERT’s WordPiece tokenizer. This allows RoBERTa
to have a more robust understanding of the text, leading to
better performance in the reconstruction task.

The masking algorithm itself can also be tuned to get
better results, as it is akin to how Huffman chooses which
parts of the dataset to mask for compression. We note that a
random masking algorithm does not perform the best, as it
can mask certain tokens that are hard to predict, like com-
mas, periods, or transition words. We demonstrate that by
switching to a more deterministic masking algorithm, us-
ing Spacy to discriminate nouns, verbs, and adjectives, we
achieve a lossless compression with much fewer training
epochs, as in Figure 6.

After fine-tuning, we applied our compression and de-
compression methods to Wikipedia texts (File 1, 2, 3). We
varied the masking probability to control the compression
ratio and always evaluate on long-trained models (100+
epochs) that showcase a 100% accuracy to present results
from lossless compression. Our results from BERT mask-
ing 15% of our text is available in Figure 7, while masking
50% of text is seen in 8. We see that the more our model is
able to mask, the more effective we can compress the data.

3



Figure 6. BERT reconstruction accuracy improves with a deter-
ministic masking algorithm targeting nouns and verbs

However, we must note that the inverse holds true for
time training and accuracy, as a 50% mask will not achieve
the same accuracy as a 15% mask with the same training
time, so must be trained for a much longer set of epochs
(1000+ epochs). This inherent trade-off is a large downside
of the model as it comes to new and unique data, but we
believe that with the advent of large language models and
in-context learning, the amount of fine-tuning needed to re-
construct such data decreases dramatically.

We note that without fine-tuning on the data that we eval-
uate against, our baseline remains around 0.2%, or equiva-
lent to around one epoch of training during a fine-tuning.
The preliminary results showed that our system achieved
higher compression ratios compared to gzip on both short
text sequences as well as longer sequences. We note that the
compression gains from using a language model are rather
insignificant for single byte-size text sequences, where both
gzip and our compression algorithm create larger files on
account of short sequences being a failure case for Huffman.
However, we do note that even within this failure case, the
masking of tokens, and thus, their semi-deletion, still allows
our method to outperform gzip due to the method’s inherent
nature of having less unique tokens overall.

4. Discussion
To increase the adoption of natural language in text com-

pression systems, we see several potential paths to increase
the efficiency of our current approach:

• Masking Strategy: Instead of random masking or
noun masking, we can likely use something that we
can probabilisticly say is more accurate. For example,
we can choose mask words based on their prediction
probability in the model so far, so words we can eas-
ily guess with our current model are more likely to be
masked. This would definitively lead to better com-
pression than the current semi-random noun picking.

Figure 7. A 15% mask shows slight improvements over gzip

Figure 8. A 50% mask allows almost a 2x reduction in size

• Latent Space Compression: We could try to get a bet-
ter latent space representation, which is usually done
by the tokenizer. We can likely use a different tok-
enizer, like GPT-2, but note that current implementa-
tions do not support masking and need to be slightly
modified to support our approach. This is akin to how
we saw slightly changing to RoBERTa’s better tok-
enizer increased performance.

• Scaling to Longer Sequences: Our current experi-
ments focused on short text sequences from Wikipedia.
We should make a model that can handle longer
sequences and evaluate its performance on larger
datasets, but note training time is a significant barrier.

• Integration with Other Techniques: We want to see
if we can combine the current gzip and BERT system
with other compression techniques, such as entropy
coding or dictionary-based methods, to double down
on our overall compression efficiency.

4



As for considering the impact of model size, we do not
see too much of a need to include it for comparison in this
result or future results. This is because a baseline BERT
model does not change in size even after fine-tuning, mean-
ing the words were already accounted for within the model
weights, with only slight changes occurring during fine-
tuning to the existing latent representation.

There are similar veins of research that we would like
to compare our model to, as compression using other forms
of neural networks, like RNNs, is not unheard of. For in-
stance, next-token prediction has been researched before
and deemed to be performant at almost 2x against gzip
[5]. However, the lack of properly open-sourced imple-
mentations or a standard baseline dataset in other NN-
compression papers makes it rather difficult to compare our
approach against theirs, other than just comparing the rough
compression ratio against that of gzip.

We also see a potential outlet in applying the same pre-
diction modeling technique to similar domains to text, like
images. We could train a model that knows an initial im-
age’s representation, then noise (mask) over the parts of the
image that we can predict easily, such as a celebrity’s face
or the texture pattern of a wall, and reconstruct that with the
trained model. Recent work in the area admits similar re-
sults from Google Deepmind, with researchers seeing that
they could use language models to similarly compress data
in other domains, like images [2].

Delétang et al. [2] also look at the relationship between
model size, dataset size, and compression performance.
They show empirically that for a given test dataset, there is
an optimal model size that balances the improved compres-
sion from more parameters with the cost of storing those
parameters. Increasing the model size beyond this optimum
actually worsens the adjusted compression rate. This con-
nects to our analysis of the inherent trade-off between mask-
ing percentage, training time, and reconstruction accuracy.
Together, these results highlight the importance of consid-
ering model efficiency, not just absolute performance, for
practical deployment of language model-based compressors
in real-world scenarios.

5. Conclusion
We have presented a compression technique based on

the fine-tuning of language models like BERT. By using
masked language modeling and noise infilling, our system
shows promising results in compressing and reconstruct-
ing text data in both lossy and lossless compression. Our
preliminary experiments show higher compression ratios
compared to traditional methods like gzip on short text se-
quences and indicates a promising future, where a machine
itself could ingest data like a language model, condense it
into a latent representation, and a user might retrieve this
data with something as small as a single token.

However, this work is still much a work in progress, and
there are still several ways to get a higher compression ra-
tio. Better masking strategies, latent spaces, alongside other
general improvements can make language models a new
state of the art in compression techniques.

The New York Times lawsuit, alongside this research,
suggest how general improvements in language modelling
can be used to potentially compress data efficiently and
serve as a glimpse of a possible future where available com-
pute and storage can be traded off against one another.

References
[1] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,

John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. Efficient training of language models
to fill in the middle, 2022.

[2] Grégoire Delétang, Anian Ruoss, Paul-Ambroise
Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang,
Matthew Aitchison, Laurent Orseau, Marcus Hutter,
and Joel Veness. Language modeling is compression,
2024.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[4] Michael M. Grynbaum and Ryan Mac. The times sues
openai and microsoft over a.i. use of copyrighted work.
The New York Times, 2023. Accessed: 31 March 2024.

[5] Michael Herrera and Kasey Luo. Lossless
neural text compression, 2023. Available:
https://web.stanford.edu/class/
cs224n/reports/custom_116635402.pdf.

[6] Shay Moran and Amir Yehudayoff. Sample compres-
sion schemes for vc classes. J. ACM, 63(3), jun 2016.

[7] Milad Nasr, Nicholas Carlini, Jonathan Hayase,
Matthew Jagielski, A. Feder Cooper, Daphne Ippolito,
Christopher A. Choquette-Choo, Eric Wallace, Florian
Tramèr, and Katherine Lee. Scalable extraction of train-
ing data from (production) language models, 2023.

[8] J. O’ Neill and D. Bollegala. Analysing dropout and
compounding errors in neural language models, 2018.

[9] The New York Times Company v. Microsoft Corpora-
tion, OpenAI, Inc., et al. Memorandum of law in sup-
port of openai defendants’ motion to dismiss. https:
//tmsnrt.rs/3Ve68rO, February 2024.

5

https://web.stanford.edu/class/cs224n/reports/custom_116635402.pdf
https://web.stanford.edu/class/cs224n/reports/custom_116635402.pdf
https://tmsnrt.rs/3Ve68rO
https://tmsnrt.rs/3Ve68rO


Figure 9. DistilRoBERTa reconstruction accuracy also improves
with a deterministic masking algorithm targeting verbs

6. Appendix
All code and datasets for this research are open-

sourced at https://github.com/ryanhlewis/
LLMCompression.

We also include some results that did not fit in the pa-
per. For instance, we show below how other models, such
as DistilRoBERTa and RoBERTa showcase similar trends
to BERT when Spacy is used to actively discriminate what
should and should not be masked based on what a word is.
In Figures 9 and 10, we opt to only mask verbs, resulting
in incredible performance on Roberta, while DistilBert fol-
lows a similar but faster performance to BERT in its general
faster trend towards original text equivalence at 100% accu-
racy. Both models reach 100% accuracy in less than half
the typical epochs with a non-random masking technique.

We also present similar 15% and 50% masking graphs
for DistilRoBERTa, as by Figures 11 and 12. Distil-
RoBERTa shows worse compression performance on the
15% masking task, likely attributed to masking common
words that gzip had already compressed. However, we note
a significant compression increase with a 50% mask, with
greater than a 2x compression ratio on the same dataset. The
50% mask, however, comes with the same impediments we
described earlier in the paper, as training a model to predict
it to a perfect accuracy takes a long time, with more than an
hour needed for a few kilobytes, and the time required make
such a large reconstruction usually lossy instead of lossless
compression. We advocate for future research to search for
a Pareto frontier for each of these objectives in finding an
ideal compression rate given both time constraints and ac-
curacy constraints. Like language modelling, it seems that
compression can be solved with enough compute.

This logic opens questions in the future as to how such
a compressor is operated, if like language models, it can
only compress and decompress files by sending to a remote
powerful server with the ability to predict upon it.

Figure 10. RoBERTa reconstruction accuracy improves dramati-
cally with a deterministic masking algorithm targeting verbs

Figure 11. A 15% mask on DistilRoBERTA marginally improves
over gzip

Figure 12. A 50% mask on DistilRoBERTa allows greater than a
2x reduction in size

6

https://github.com/ryanhlewis/LLMCompression
https://github.com/ryanhlewis/LLMCompression

